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Abstract—The temporal development of thermal disturbances in the fluid layer heated isothermally from below is
investigated, based on propagation theory. This theory is examined by using scaling. To examine the behavior of
thermal instability the mean-field approximation is employed and resulting equations are solved by Galerkin method.
The stability criteria to mark the onset of convective instability are newly suggested as the intersection point of the
growth rate of averaged temperature with that of its fluctuation. The resulting critical time is close to that derived from
propagation theory. By considering the nonlinear effects, the characteristic times to represent the detection time of
manifest convection and also to exhibit the minimum Nusselt number are discussed.
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INTRODUCTION as an initial condition. Hohenberg and Swift [1992] suggested a mod-
el where the Langevin noise term inducing convective motion is
When a fluid layer is heated from below, it becomes potentiallyused as an initial condition.
unstable by the buoyancy forces due to the inverse density gradi- Recently, the onset of natural convection has been analyzed in
ent. This phenomenon is familiar to anyone who has observed thearious time-dependent systems by using propagation theory [Choi
shimmering of air. The mechanism of such convective flow is re-et al., 1998; Kang et al., 2000; Kim et al., 2002; Yang and Choi,
sponsible for some great ocean currents and for the global circul&002]. However, there exists some difference between the pre-
tion of the atmosphere. Since systematic experiments of Bénardicted onset times derived from propagation theory and available
[1901] and linear stability theory of Lord Rayleigh [1916] were in- experimental data. In the present study the propagation theory is
troduced, a great deal of work has been conducted in the field ak-examined by using scaling and with the stability criteria from the
mathematics, physics and engineering. Buoyancy-driven convegpropagation theory the Oberbeek-Boussinesq equations are solved
tion plays an important role in conventional heat and mass transfdsy the Galerkin method. The new stability criteria are suggested by
systems, materials processing requiring uniformity of products, andomparing the temporal growth rate of the conduction temperature
in the design of reactors. In many practical processes, a sudden hefi¢ld with that of fluctuations. The present study is concerned with
ing or cooling with a high temperature gradient is more common.the case of a large Prandtl number Pr, especiatyoRrand the
Buoyancy-driven convection can occur before the temperature proeharacteristic time to mark the detection of manifest convection is
file in the basic state becomes fully developed. Therefore, it is im-discussed in comparison with available theoretical predictions and
portant to know when or where the buoyancy-driven convectionexperimental data.
sets in.
For a system having a time-dependent nonlinear temperature pro- GOVERNING EQUATIONS

file, the onset of natural convection was first investigated theoreti-
cally by Morton [1957] and experimentally by Soberman [1959], The system considered here is an initially quiescent Newtonian
respectively. Foster [1965] developed the ampilification theory, whichfluid between the two horizontal rigid plates heated from below, as
uses an initial value technique to match disturbances with time irshown in Fig. 1. Here Z denotes the vertical distance. The temper-
the system. This theory requires the amplification factor to repre-
sent the detection time of manifest convection. With the mean-fielc

approximation involving nonlinear convective terms Herring [1963, T=T.

1964] analyzed the fully developed heat transport. Elder [1969] ex - rigid

amined the time-dependent development of convective motion witt t

the mean-field approximation by using the finite difference scheme Z | d l g

Using a stochastic model, Jhaveri and Homsy [1982] defined the

onset of convective motion by comparing the convective heat trans Y _5 ri gid

port with the conductive one. They employed stochastic white noise T= Tb t t t T 1 X

"To whom correspondence should be addressed. Fig. 1. Schematic diagram of conduction state considered in the
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ature of fluid is Tfor time &0 and for t>0 there is a step change in
the bottom temperature to a higher valyeFbr a largAT(=T,—
T,), thermal instabilities inducing buoyancy forces will set in at a

o, . , =
E(DZ—aZ)2+2ir[zDS—a2(D+(2n+2)a2]gm*=Raaze, ®)
O P O

f:ertgin time and grow with ﬁme. Based on'the Bous;inesq approx- g)z +1 D -a> —n%‘ =w'D8, @
imation, the proper dimensionless governing equations are repre- 2
sented by . . i
with the following boundary conditions
Qli —? 2 :l - =g = = =
T Hru S-0x(0x(uu)) +Ralx(Oxe,6), @) w' =Dw’ =6 =0 at{ =0 and{ =1/./T, ®)
where D=d(-)/d, Ra=Rar** and &=ar*? with a=/a +& . Herer
%% +U m%:mza ) is regarded as parameter, e, at critical condition.

For deep-pool systems, the upper boundadz bt/ approach-
whereu, 6, Tand e denote the velocity vector, the temperature, the €s the infinite ag—0. The basic temperatu@, which is the tem-
time, and the unit vector in the z-direction, respectively. Her’ d, d perature profile in conduction state, is described by

a, ald andAT are scaling factors for distance, time, velocity, and <

temperature, respectively. Symbols d andenote the fluid depth 6 =1—erf@% as 10 ©
and the thermal diffusivity, respectively. Eq. (1) has been obtained

by eliminating the pressure from equations of continuity and mo-For given Pr and ghe minimum value of Ras calculated numer-
tion. The important dimensionless parameters, the Prandtl numbégally. Then the minimum value of i.e.,7; , and its corresponding

Pr and the Rayleigh number Ra, are defined as wavenumber as obtained for given Pr and Ra. The minimum val-
, ue of Raincreases with increasing@) and the case of n=0 con-
pr=Y and RggﬁA_Td, (3a-h) stitutes the minimum bound, as shown in Fig. 2. If n<O0, it is irra-
a av

tional since@ — asT—0 near z=0. This procedure can be ex-

wherev, a and3 are the kinematic viscosity, the gravitational ac- tended to the whole time domain by fixing Egs. (6)-(8) [Yang
celeration and the thermal expansion coefficient, respectively. ~ and Choi, 2002; Kim et al., 2002]. For>co we can obtain the well-
known critical values, r=1,708 angk=8.12, which correspond to

PROPAGATION THEORY the case of the fully developed, linear temperature profile.
From marginal stability curves shown in Fig. 2, the stability cri-
By following the well-known linear stability analysis the infini- teria to mark the onset of thermal instability are obtained:
tesimal pert'u.rbation quantities gnd 6, are superimposed on the' £=754R&° with a=0.197R¥ asT—0 andPr>w (10)
basic quantities, andé,, respectively. Since the present system is - . Lo )
initially quiescentu,=0. For the regular convective motion, the di- At the condition off; =1.6x 10* with Ra=1@he normalized am-

mensionless vertical velocity componentamd the temperature  Plitudes of velocity and temperature disturbances are shown in Fig.
one6, can be described as 3. For Pr=>oo, the velocity amplitude wecovers the whole domain

while the temperature on@,exists mainly withird,. It seems evi-
(wy, ) =(w., 6.)exd i(ax *ay)], @)

where the subscript * and i denote the perturbed amplitude func
tion and the imaginary number, respectively. Hewnd arepre-
sent the dimensionless wavenumbers along the x- and y-directior
respectively. Based on the above normal mode of disturbances, tt
propagation theory assumes that the thermal disturbances at the ci
ical onset time to mark the onset of a fastest growing instability are
propagated mainly within the thermal boundary layer [Yang and i
Choi, 2002]. 10" Ef
Under this assumption the scaling balances between viscous ar * F v
buoyancy forces in the Z-component of the equation of motion oS

10°

10*

10° |

vIL CgpT,, ©)
O

wherel; is the thermal boundary-layer thickness. From the above 10' E 3
relation the scaling relationship of,/(Rag,) O&0r  can be de- ; ]
rived. Hered,(=Ay/d) is the dimensionless thermal boundary-layer 0.54
thickness withd, 0 7% . For a given Ra, the velocity and tempera- 10° . L . L
ture disturbances are assumed to have the fomn ®f"'w' () 0.0 0.5 1.0 L5
and6, =1'9 () , wherd(=z/./T) represents the similarity variable. a"
Now, the new stability equations are produced self-similarly from Fig. 2. Marginal stability curves for 7—0. The minimum of Ra-
Egs. (1) and (2): value=20.71 with 3=0.54 for n=0.
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1.0 T y T y [1969]. The proper boundary conditions are
Ra = 10* . W' =0w/dz =6' =[B[F1=0 at z=0, (15a)
a =45 w'=0w”0z =0' =[B[F0 at z=1. (15b)
0.8 r*=1.6x107 ] .
¢ 2. Galerkin Method
When ignoring the convective terms of fluctuations, the well-
06k _ known linear stability equations are recovered from Egs. (12)-(15).
' In order to treat the transient behavior of thermal instabilities, the
Galerkin method is employed. The two-dimensional velocity and
temperature disturbances are assumed by a series of specified spa-
0.4 7 tial functions with time-dependent amplitude coefficients like Eq.
@:
02} % 0.00. pr MW+ w'(T,x,2) =w.cog a3, (16)
0'(1,x,z) =6.coq ay, @n
0.0 , ] ) \ . . B(1,2)(F1-z +2§C”(T)sin(nnz), (18)
0.0 0.2 0.4 0.6 0.8 1.0 o= T

z wherew, =) A (1) sin(@)sin(rvz) andB, = B,(7) sin(nz). These
Fig. 3. Amplitude profiles of basic temperature and normalized e et

temperature and velocity disturbances. functions automatically satisfy the boundary conditions. The trial

functions of w and @, are the same as those of Gresho and Sani
) ) _ [1971]. By substituting Egs. (16)-(18) into (12)-(14) and using the
dent that the thermal disturbances are propagated mainly within thgyhgonality of the trial functions we obtain the following linear

thermal boundary layer until the temperature profiles deviate fromyet of 3N simultaneous, first-order differential equations for the am-
the conduction state and then disturbances are amplified enough Hﬂtude coefficients:

be detected with naked eyes or thermocouples. The validity of this

statement is challenged below by using the Galerkin method. dA, =P (K +1)72 +&]A, + 4&PrRa % H (19)
dr KDY T
GROWTH OF DISTURBANCES
dBk_ 2 > N N N
= =-[K*rt+d]B.*2 $ AH.,—2 AnCoKinn b 20
1. Mean-Field Approximation ar L 1By |:mzl “ mzlnzl “ } (0)

In the present study we employ the mean-field approximation

suggested by Herring [1964]. For initially quiescent fluid layer the  dc, __ , _ky
temperature and velocity fields are divided into the sum of a hori- dr k*rfC, 2 .ZleA'Bme'm ' @D
zontal mean and its fluctuating part:
%y 2) = B(0.2) O (T, y.2), 112) }/(\;ﬁg\:;nk:él,ei,qit.s.: ..., N. The matriceg,HK,., and_N,, have the
w(T,X,Y,2) =0W(T,2) HW'(T,X,Y,2). (11b) 9 )
Here[TTJ denotes the horizontally averaged one and the superscript Hin =[; sin(krz)sin(rz)sin(mrz)dz, (229)
' represents the Qeviation from' the mean temperature. The resulting K, = r sin( krz)sin(7z)sin(mz)cos{ mz)dz, (22b)
mean-field equations are obtained by introducing Egs. (11) into (1) 0
and (2): Ny =J: diz{ sin( mrz)sin(mz) sin(l 7z)} sin( krz)dz. (22c)
10 ,_ o.M
%Frﬁ _ngjzw =Rall;6 +ﬁ’ 12) The above amplitude Egs. (19)-(21) need the rational initial con-
ditions but they cannot be specifiedraf. Therefore the calcula-
%ﬂ —DZ%- :—w'%ﬁD+H, 13) tion starts ar=7(<<t). At =1, the normalized quantities of dis-
T z

turbance amplitudes derived from the propagation theory are given
0 P with proper magnitudes of \andé, in Egs. (16) and (17), i.e.,,w
@7 _a_zz%ﬁDz_a_zw" o'y 14) and@;, and mean temperature is obtained from Eq. (18). In the pres-

y  rm 2t in ent study we sgi=10". Then the initial coefficients are expressed as
whereld; =070x" +37dy” . The terms H and M represent the fluc-

tuating self-interactions owing to advection of heat and momen- A (1) =2E w, w,(,,2)sin(7z)sin( krz)dz, (23)
tum, i.e.,u (O . For Pr>o the nonlinear term M in Eq. (12) can

be negligible. Since the mean temperature gradients are large nearp, (r) =2E 6.,6,(1.,2)sin(krz)dz, (24)
the bottom boundary, H can be negligible in the bulk of the flow.

These are well illustrated by the work of Herring [1963] and Elder  C (1) =exp(—k*771), (25)
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N Table 1. Comparison of present results with available ones in full

Nu ﬁ?%r =1‘2k21 G, (26) devel%ped statg of Ra=Ttand a=9 g
where v and 6, are the normalized profiles at7, (see Fig. 3) Winax O Nu
and Nu, ¢ and k denote the Nusselt number, the heat flux at the  Present study 29.77 0.1847 2.788
bottom wall, and the thermal conductivity, respectively. Now, Egs. Herring [1964] 21.95 0.18% 2.824
(19)-(21) can be integrated froma10* until the desired time. The Elder [1969] 21.912 0.1847 2.823
integration is done numerically by using Gear's BDF method which
can treat the stiffness of nonlinear terms. If the coupled convective

term Ov'0'0 does not exist in Eq. (14), less than 20 Fourier coef- 10’ E 10°

ficients are enough to describe development of fluctuations, as we
done by Foster [1965]. We chase=10" with 120 Fourier terms.
The calculated values,AB, and G are compared with the pre- 10* 3 ]
dicted ones of the previous time within the error tolerance of P(10 f
Since we treat the case of P, it is clear that dfdr=0 in Eq. i 4102
(19). By choosing the propé-value we can proceed with the pres- 10° E w /0’ ]
ent Galerkin scheme, starting framr. F T

RESULTS AND DISCUSSION 10° F w. W

1. Fully Developed State : 10'
In the fully developed region with Ra=14hd Pr—oo, the pro- 10" F
files of the mean-field temperature and fluctuations are shown ir ;
Fig. 4. Here afor a fastest growing mode has been obtained from
the propagation theory. It is known that the quantities except w' ar¢1¢° £

seriously distorted from the initial shapes given in Fig. 3. Such a E """4 — """‘2 i """Vl e 10°
behavior stresses the nonlinear coupling effect caused by the ter 10~ 10 10 10
(W' @'0in the present system. The profilesfbind[P0 show that T

the conduction layers exist near the upper and lower boundaries. Fig. 5. Temporal evolution of disturbances for Ra=10and a=4.5.
Table 1 shows that for Ra=18nd a=9 there is a small differ-

ence in Nu according to the choice of numerical technique. In the . . .
present study we used the 120 Fourier coefficients and the trial funéhat the present Galgrkln mthod Is valid at R&=10

tions defined by Gresho and Sani [1971] while Herring [1964] usedz' Temporal Evolutlon' of Disturbances .at Ra: 10 )
the Green function based on multiple wavenumbers and Elder [1969 The temporal evolution of the fluctuation fields for Ra=%0

employed the finite difference method. The present results sho hown n Fig. 5. ngg t he maximum value§ of w @ritve been
normalized by their initial maximum magnitudes.ywand®; ...

Up tot=T, there is no significant change in the amplitudes of fluc-
1.0 ; N B N ; tuation quantities. As Mahler et al. [1968] commented that the initial
w'w' ] disturbances would be constant, such a behavior is shown in this

time domain of 87<T;. The ratio of y,, to 8., increases slowly

0.8 | e up to7=t,. For T>7, there is a super exponential growth of dis-
turbances since the temperature field has been developed to an ap-
ove' ] preciable extent. In the fully developed region the fluctuation ampli-
0.6k | tude behaves like a damped oscillator and eventually converges to

a constant value due to the effect of the nonlinear ternii:6:[1
Fig. 6 shows that for O 7, the heat transport seems to be gov-
<6> erned by conduction. Hergis called the undershoot time. Mani-
0.4 7 fest convection exists faet,. For small time the heat transfer rate
under the conduction state decreases Witthile the thermal bound-
ary-layer thickness increases with However, after manifest con-
0.2 - vection is detected, the heat transfer rate starts to increase with time
and the Nusselt number Nu starts to deviate from that of conduc-
tion. Jhaveri and Homsy [1982] regarded the detection time of man-

0.0 A T R S S ifest convection as that time when the Nu-value is 1% larger than
0.0 0.2 0.4 0.6 0.8 1.0 that of conduction state. With=1073, the predicted: -value is close
Z to that in available experiments [Patrick and Wragg, 1975; Inoue et al.,
Fig. 4. Fully developed profiles of basic and fluctuation quanties ~ 1983]. Therefore it may be stated that4r,  in the actual system.
for Ra=10" and a=4.5. Here we employ the root-mean-square (rms) quantity in order to
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10' - - ———————3 10" 2 —r—rrrem y
g | - - - - Galerkin method ’ ] ,
[ amplification theory . 6.,=10
conduction equation BN
6l d PN I 7 o
J 3
/, ] / 10°
s 7N ] 1F -
A / /o &
4 N / o /
u {10 X
3 ~
N =1.1x10?
Z':: 1.6x107 . iz = 6.0x102
9*, = 103 ~ ok Tr[,max - U
2t 110’ Jﬂf’*‘
ST e (24
T 4 10° 7
10° L L . L ] 1 AT ETTT! S PRTTY A risl sl
10” 2 4 6 8 10" 10+ 10° 102 10" 10°
T T
Fig. 6. Nusselt number Nu and ampilification factow as a func-  Fig. 7. Comparison of growth rate of mean temperature with its
tion of time 1 for Ra=10* and a4=4.5. perturbed one for 8=10%, 10°, 10° with Ra=1¢ and a=
4.5,

examine the quantitative behavior of temporal growth of disturbances:

T T T T

12

(Dims :[\%J'V( deV} 27) present 7_
® Galerkin method
where V is the total volume of the system considered. The rms cor
cept is applied to both the velocity and the temperature fields. Foste
[1965] proposed the so-called amplification factor using the rms 102 F
value of vertical velocity normalized with the initial value, e.1)= ( ;
W, (DW,; dT). From the linearized equations of (12)-(14) the
amplification theory is recovered. But this theory loses its validity *
when the effect of nonlinear terfv'6'0  becomes significant. Gre-
sho and Sani [1971] assumed that *=tGhe detection time of
manifest convection. For Ra=16ur results show thaf =1.6x10?
with a=4.5 andw =697 at=t1,, as shown in Fig. 6. In the figure
it is shown that linear theory is valid unt#1,. The coupled
nonlinear term plays a significant role fort,. .. Inoue etal. [1983]

To clarify the detection time of manifest convection we intro- G
duce the following growth rates using the rms values of mean tem 10 10 10° 106 107
perature and its fluctuations: Ra

(28a-h) Fig. 8. Comparison of characteristic times with experimental data.

equation (10)
10°

[ experimental 7
- — — Patrick and Wragg [1975]

o1 dbg,  _1d6
° @, dr ’ e dr

where § and 1 represent the growth rates of mean temperature and

its fluctuations, respectively. For small tingeX/(4r) from Eq. (9). For Ra=16 10 and 10, the above Galerkin scheme wilk=

Their temporal behavior is shown in Fig. 7. Rert,, 1, is larger 107 has been used in obtaining a, r, and Nu. Here ds chosen
than . The fluctuations are deamplified fox® andr_ exists near  as the critical value like that of Ra=1@ith which the earliest time

T.. The g-value reaches the maximuim,, at 7=1,, .., and then it T, to reach =1, is obtained. In Fig. 8 is compared witiT,. For
decreases sharply with time. Considenifigr,, ...  , it is supposedPr>2000 the experimentglvalues of Patrick and Wragg [1975]
that manifest convection would be detected near these characterisad Inoue et al. [1983] are located rea4 T,

tic times. The critical tim& may be called the onset time of intrinsic ~ Fig. 9 shows the critical wavenumbers obtained from several mod-

instability becausg. is independent of magnitude @fwith 7.<t.. els. For large Ra, the-aalues from the Galerkin method are much
As shown in the figure, however, ... is sensitive to the magni- smaller than the others. For Ra%1be present Galerkin scheme
tude off,. yields 7,=3.7x10° with a=5.5 while the propagation theory does
3. Large-Ra Case 1,=3.5x10° with 3=9.1 from Eq. (10). The onset of convective

Korean J. Chem. Eng.(Vol. 21, No. 1)
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Ty T T T T T

The present r,.-values and his growth rates are compared in Fig.
10. In both cases the growth rates are almost proportionafto Ra
This means that they are inversely proportiona] {see Eq. (10)).

s ] Since §=1/(4r) from Eq. (9), the condition ofzr, yields r=1/(4t,).
Now, it is suggested that the condition gfry is the measure to
predict the onset of thermal instability, izand g for a given Ra
and Pr.

Pr— o
propagation theory
------ Herring [1964]

® Galerkin method
Pr=17
-~ -- Gresho and Sani [1971]

slope = 1/3

CONCLUSION

101 -
[ In the present study the temporal evolution of disturbances in
the fluid layer heated from below has been investigated theoreti-
cally for Pr— 0. Based on propagation theory, the Galerkin meth-
od has been employed. It is shown that the present Galerkin scheme
is useful for Ra1(. But it is believed that the results of Ra=10
would be extended qualitatively to the case of a higher Ra. We here
suggest a new measure to predict the onset of thermal instability
and also that of manifest convection, based on the growth rates of
Ra the basic temperature field and its fluctuations. This new parameter

Fig. 9. Comparison of critical wave numbers from various mod- (r=ro) will be very useful in pursuing more refined stability analy-
els. sis for large-Pr systems.

3.12 N PRI T I |

10° 10* 10° 10° 107
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: depth of fluid layer

: gravitational acceleration

. heat conductivity

: Nusselt number, d/(KAT)

: Prandtl number/a

: bottom wall heat flux

: growth rate of mean temperature

: growth rate of temperature fluctuations
: Rayleigh number,@ATd¥(av)

: temperature

: velocity vector

: dimensionless vertical velocity, W/

: spanwise coordinate

: vertical coordinate

: dimensionless vertical coordinate, Z/d

Greek Letters

: thermal diffusivity

: thermal expansivity
: dimensionless thermal boundary-layer thickness
: dimensional thermal boundary-layer thickness
: kinematic viscosity

: dimensionless temperature AT/

: dimensionless timegtd?

: similarity variable, z//t

Subscripts
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